Stochastic Block-Coordinate Gradient Projection Algorithms for Submodular Maximization
نویسندگان
چکیده
منابع مشابه
Conditional Gradient Method for Stochastic Submodular Maximization: Closing the Gap
In this paper, we study the problem of constrained and stochastic continuous submodular maximization. Even though the objective function is not concave (nor convex) and is defined in terms of an expectation, we develop a variant of the conditional gradient method, called Stochastic Continuous Greedy, which achieves a tight approximation guarantee. More precisely, for a monotone and continuous D...
متن کاملGradient Methods for Submodular Maximization
In this paper, we study the problem of maximizing continuous submodular functions that naturally arise in many learning applications such as those involving utility functions in active learning and sensing, matrix approximations and network inference. Despite the apparent lack of convexity in such functions, we prove that stochastic projected gradient methods can provide strong approximation gu...
متن کاملStochastic Submodular Maximization
We study stochastic submodular maximization problem with respect to a cardinality constraint. Our model can capture the effect of uncertainty in different problems, such as cascade effects in social networks, capital budgeting, sensor placement, etc. We study non-adaptive and adaptive policies and give optimal constant approximation algorithms for both cases. We also bound the adaptivity gap of...
متن کاملDeterministic Algorithms for Submodular Maximization Problems
Randomization is a fundamental tool used in many theoretical and practical areas of computer science. We study here the role of randomization in the area of submodular function maximization. In this area most algorithms are randomized, and in almost all cases the approximation ratios obtained by current randomized algorithms are superior to the best results obtained by known deterministic algor...
متن کاملInterleaved Algorithms for Constrained Submodular Function Maximization
We present a combinatorial algorithm that improves the best known approximation ratio for monotone submodular maximization under a knapsack and a matroid constraint to 1−e −2 2 . This classic problem is known to be hard to approximate within factor better than 1− 1/e. We show that the algorithm can be extended to yield a ratio of 1−e −(k+1) k+1 for the problem with a single knapsack and the int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complexity
سال: 2018
ISSN: 1076-2787,1099-0526
DOI: 10.1155/2018/2609471